62 research outputs found

    The Structure Transfer Machine Theory and Applications

    Get PDF
    Representation learning is a fundamental but challenging problem, especially when the distribution of data is unknown. We propose a new representation learning method, termed Structure Transfer Machine (STM), which enables feature learning process to converge at the representation expectation in a probabilistic way. We theoretically show that such an expected value of the representation (mean) is achievable if the manifold structure can be transferred from the data space to the feature space. The resulting structure regularization term, named manifold loss, is incorporated into the loss function of the typical deep learning pipeline. The STM architecture is constructed to enforce the learned deep representation to satisfy the intrinsic manifold structure from the data, which results in robust features that suit various application scenarios, such as digit recognition, image classification and object tracking. Compared to state-of-the-art CNN architectures, we achieve the better results on several commonly used benchmarks\footnote{The source code is available. https://github.com/stmstmstm/stm }

    Local Feature Discriminant Projection

    Get PDF
    In this paper, we propose a novel subspace learning algorithm called Local Feature Discriminant Projection (LFDP) for supervised dimensionality reduction of local features. LFDP is able to efficiently seek a subspace to improve the discriminability of local features for classification. We make three novel contributions. First, the proposed LFDP is a general supervised subspace learning algorithm which provides an efficient way for dimensionality reduction of large-scale local feature descriptors. Second, we introduce the Differential Scatter Discriminant Criterion (DSDC) to the subspace learning of local feature descriptors which avoids the matrix singularity problem. Third, we propose a generalized orthogonalization method to impose on projections, leading to a more compact and less redundant subspace. Extensive experimental validation on three benchmark datasets including UIUC-Sports, Scene-15 and MIT Indoor demonstrates that the proposed LFDP outperforms other dimensionality reduction methods and achieves state-of-the-art performance for image classification

    Knowledge Graph Embeddings for Multi-Lingual Structured Representations of Radiology Reports

    Full text link
    The way we analyse clinical texts has undergone major changes over the last years. The introduction of language models such as BERT led to adaptations for the (bio)medical domain like PubMedBERT and ClinicalBERT. These models rely on large databases of archived medical documents. While performing well in terms of accuracy, both the lack of interpretability and limitations to transfer across languages limit their use in clinical setting. We introduce a novel light-weight graph-based embedding method specifically catering radiology reports. It takes into account the structure and composition of the report, while also connecting medical terms in the report through the multi-lingual SNOMED Clinical Terms knowledge base. The resulting graph embedding uncovers the underlying relationships among clinical terms, achieving a representation that is better understandable for clinicians and clinically more accurate, without reliance on large pre-training datasets. We show the use of this embedding on two tasks namely disease classification of X-ray reports and image classification. For disease classification our model is competitive with its BERT-based counterparts, while being magnitudes smaller in size and training data requirements. For image classification, we show the effectiveness of the graph embedding leveraging cross-modal knowledge transfer and show how this method is usable across different languages

    Episodic Multi-Task Learning with Heterogeneous Neural Processes

    Full text link
    This paper focuses on the data-insufficiency problem in multi-task learning within an episodic training setup. Specifically, we explore the potential of heterogeneous information across tasks and meta-knowledge among episodes to effectively tackle each task with limited data. Existing meta-learning methods often fail to take advantage of crucial heterogeneous information in a single episode, while multi-task learning models neglect reusing experience from earlier episodes. To address the problem of insufficient data, we develop Heterogeneous Neural Processes (HNPs) for the episodic multi-task setup. Within the framework of hierarchical Bayes, HNPs effectively capitalize on prior experiences as meta-knowledge and capture task-relatedness among heterogeneous tasks, mitigating data-insufficiency. Meanwhile, transformer-structured inference modules are designed to enable efficient inferences toward meta-knowledge and task-relatedness. In this way, HNPs can learn more powerful functional priors for adapting to novel heterogeneous tasks in each meta-test episode. Experimental results show the superior performance of the proposed HNPs over typical baselines, and ablation studies verify the effectiveness of the designed inference modules.Comment: 28 pages, spotlight of NeurIPS 202

    Order-preserving Consistency Regularization for Domain Adaptation and Generalization

    Full text link
    Deep learning models fail on cross-domain challenges if the model is oversensitive to domain-specific attributes, e.g., lightning, background, camera angle, etc. To alleviate this problem, data augmentation coupled with consistency regularization are commonly adopted to make the model less sensitive to domain-specific attributes. Consistency regularization enforces the model to output the same representation or prediction for two views of one image. These constraints, however, are either too strict or not order-preserving for the classification probabilities. In this work, we propose the Order-preserving Consistency Regularization (OCR) for cross-domain tasks. The order-preserving property for the prediction makes the model robust to task-irrelevant transformations. As a result, the model becomes less sensitive to the domain-specific attributes. The comprehensive experiments show that our method achieves clear advantages on five different cross-domain tasks.Comment: Accepted by ICCV 202

    Supervised local descriptor learning for human action recognition

    Get PDF
    Local features have been widely used in computer vision tasks, e.g., human action recognition, but it tends to be an extremely challenging task to deal with large-scale local features of high dimensionality with redundant information. In this paper, we propose a novel fully supervised local descriptor learning algorithm called discriminative embedding method based on the image-to-class distance (I2CDDE) to learn compact but highly discriminative local feature descriptors for more accurate and efficient action recognition. By leveraging the advantages of the I2C distance, the proposed I2CDDE incorporates class labels to enable fully supervised learning of local feature descriptors, which achieves highly discriminative but compact local descriptors. The objective of our I2CDDE is to minimize the I2C distances from samples to their corresponding classes while maximizing the I2C distances to the other classes in the low-dimensional space. To further improve the performance, we propose incorporating a manifold regularization based on the graph Laplacian into the objective function, which can enhance the smoothness of the embedding by extracting the local intrinsic geometrical structure. The proposed I2CDDE for the first time achieves fully supervised learning of local feature descriptors. It significantly improves the performance of I2C-based methods by increasing the discriminative ability of local features while greatly reducing the computational burden by dimensionality reduction to handle large-scale data. We apply the proposed I2CDDE algorithm to human action recognition on four widely used benchmark datasets. The results have shown that I2CDDE can significantly improve I2C-based classifiers and achieves state-of-the-art performance
    • …
    corecore